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Serendipitous synthesis of a ditwistane: a one-step access!
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Abstract—4-tert-Butyl-2-cyclohexen-1-one dimerizes in THF solution via its kinetic enolate, leading to di-tert-butylditwistane 8 in
up to 36% yield (�78 �C! room temp., protonolysis, flash chromatography). X-ray crystallography shows that 8 incorporates one
R and one S enantiomer of the starting ketone; none of the diastereomeric ditwistanes epi-8, epi �-8 or iso-8 was isolated. This means
that the formation of 8 proceeds with mutual kinetic resolution and 100% induced diastereoselectivity.
� 2004 Elsevier Ltd. All rights reserved.
Twistanes comprise the unsubstituted 1;4,2;5-
bis(ethano)cyclohexane 1 and derivatives thereof; hence
twistanes are tricyclic. Ditwistanes (2) are tetracyclic
compounds and defined by the occurrence of a twistane
substructure in which one cyclohexane ring is spanned—
in a �para� manner—by a not yet accounted for (i.e.,
third) ethano bridge. Stated differently, ditwistanes con-
sist of two twistanes, which have two twist-boat cyclo-
hexane rings in common.
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So far, to the best of our knowledge, there have been
four syntheses of ditwistane(s) in the literature (vide in-
fra): three accesses to the unsubstituted ditwistane
21–3,4–6 and 3 and one synthesis of the dihydroxytetra-
methylditwistanedione 197,8. The fifth route to a ditwis-
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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tane is the unexpected outcome of our recent attempt to
effect a conjugate addition of tBu2CuLi to 4-tert-butyl-
2-cyclohexen-1-one (3; Scheme 1). Rather than the de-
sired trans-3,4-di-tert-butyl-1-cyclohexanone (C14H26O)
we isolated—according to HRMS—a product of
molecular formula C20H32O2 (36% yield).9 The same
compound C20H32O2 resulted when 4-tert-butyl-2-
cyclohexen-1-one (3) was treated with 0.6equiv of
KHMDS (30% yield). X-ray crystallographic analysis
established that this compound was di-tert-butyl-
hydroxyditwistanone 810 (Fig. 111).

Irrespective of the base, the overall transformation
3!! 8 follows the same mechanism. As detailed in
Scheme 1, it must comprise the following steps: partial
enolate formation (!metalo-3); tandem13 intermolecu-
lar/intramolecular Michael addition OR enolate Diels–
Alder reaction14 (!4); ketoenolate equilibration
(4!6); aldol addition (!7); alcoholate protonation
upon workup (!8).

Ditwistane 8 with the indicated stereochemistry results as
the dimerization product of 4-tert-butylcyclohexenone
(3) and its enolate (metalo-3) only if the introductory
Michael addition (!4) proceeds with an effective mutual
resolution (cf. Scheme 1): Along the ditwistane-deliver-
ing pathway, the R-enantiomer of the enolate and the
S-enantiomer of the non-deprotonated enone combine
exclusively with one another—and vice versa (which
implies that enantiopure 4-tert-butylcyclohexenone can-
not form ditwistane 8 upon partial deprotonation).
The reason for this preference is the minimization of
steric hindrance, plausibly while the first C–C bond
forms: Only said mutual reconnaissance allows each
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Scheme 1. Reagents and conditions: (a) tBu2CuLi (2.0equiv), Et2O,

�30�C, 30min, room temp., 21h; 36% (we re-isolated a considerable

amount of impure 3 implying �considerably more than 36% yield of 8
based on recovered starting material�). (b) KHMDS (0.6equiv), THF,
�78�C (25min), room temp. (16h); 33%.

Figure 1. Pluton/Povray plot12 of ditwistane 8.
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Scheme 2. Reagents and conditions: Ref. 1: (a) Br2; 68%; (b) NaOMe,

D; 69%; Ref. 2: (c) HCl, aq THF; 77%; (d) hm; 82%; Ref. 3: (e) CH2N2;
(f) hydrazine hydrate, KOH, triethylene glycol; 85% over the two steps;

(g) aq H2SO4; 90%; (h) CH2N2; (i) hydrazine hydrate, KOH,

triethylene glycol; 73% over the two steps; (j) H2, Pd/C; 77%.—Ref.

7: (k) NaIO4, H2O; 620%; Ref. 8: (l) hm; 82%; (m) H2, Pd/C; 92.5%.
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reactant to selectively engage that face of its six-
membered ring, which opposes the attached tert-butyl
substituent.
In contrast, if uniquely enolate metalo-3 had reacted on
the face opposite to its tert-butyl group, enone 3, how-
ever, on its tert-butylated side, the epimeric ditwistane
epi-8 would have been obtained. Conversely, if enolate
metalo-3 had reacted on its tert-butylated side and enone
3 on the less hindered opposite side, another epimer
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would have resulted, namely ditwistane epi’-8. If, finally,
bond formation between enolate metalo-3 and enone 3
had occurred on the tert-butylated side of both reactants,
this would have yielded compound iso-8, that is, another
diastereomer—albeit not an epimer—of the actually
formed ditwistane 8. We detected none of these diaster-
eomers during chromatography—assuming they would
have eluted from the column with similar polarity as 8.

Our synthesis of ditwistane 8 in 1 step and 36% yield is
more straightforward and more efficient than the previ-
ously described approaches to the ditwistane frame-
work: The route from acetal 9 to ditwistane 2
comprised 10 steps and provided 13% overall yield
(Scheme 2, top);1–3 the conversion of dimethylphenol
+
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Scheme 3. Reagents and conditions. Ref. 4: (a) NaIO4, H2O; 74%;

Ref. 5: (b) HCl; 94%; (c) hm; 38%; Ref. 6: (d) ethylene glycol, p-TsOH;
94%; (e) SOCl2, pyridine; 67%; (f) aq HCl; 90%; (g) aq KOH; 76%; (h)

H2, Pd/C; P47%.—Ref. 3: (i) Diels–Alder reaction: hydroquinone, D;
6%; (j) ethylene glycol, p-TsOH; 78%; (k) B2H6; H2O2, NaOH; (l) 10%

H2SO4; 25% over the two steps; (m) MsCl, pyridine; (n) NaH, DMF;

7% over the two steps.
16 into the octasubstituted ditwistane 19 comprised
three steps and afforded 615% overall yield (Scheme 2,
bottom);7,8 the synthesis of the ditwistanediols 27—as
a mixture of stereoisomers—from ortho-(hydroxy-
methyl)phenol (21) required eight steps and afforded
5.4% overall yield (Scheme 3, top);4–6 last but not least,
the transformation of diene 28 and dienophile 29 into
the ditwistanone 31 proceeded in six steps and gave
0.08% overall yield (Scheme 3, bottom).3 It is notewor-
thy that the three last-mentioned syntheses and our ac-
cess have one feature in common: The C12 scaffolds of
the respective ditwistanes 19, 27, 31, and 8 are estab-
lished from two six-membered ring reagents.
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