# Serendipitous synthesis of a ditwistane: a one-step access! 

Thilo Berkenbusch, ${ }^{\text {a }}$ Andy Ch. Laungani, ${ }^{\mathrm{b}}$ Reinhard Brückner ${ }^{\mathrm{b}, *}$ and Manfred Keller ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Bayer Chemicals, D-51368 Leverkusen, Germany<br>${ }^{\mathrm{b}}$ Institut für Organische Chemie und Biochemie der Albert-Ludwigs-Universität, Albertstr. 21, D-79104 Freiburg, Germany

Received 7 October 2004; revised 21 October 2004; accepted 22 October 2004
Available online 11 November 2004


#### Abstract

Butyl-2-cyclohexen-1-one dimerizes in THF solution via its kinetic enolate, leading to di-tert-butylditwistane $\mathbf{8}$ in up to $36 \%$ yield ( $-78^{\circ} \mathrm{C} \rightarrow$ room temp., protonolysis, flash chromatography). X-ray crystallography shows that $\mathbf{8}$ incorporates one $R$ and one $S$ enantiomer of the starting ketone; none of the diastereomeric ditwistanes epi-8, epi'-8 or iso-8 was isolated. This means that the formation of $\mathbf{8}$ proceeds with mutual kinetic resolution and $100 \%$ induced diastereoselectivity.


© 2004 Elsevier Ltd. All rights reserved.

Twistanes comprise the unsubstituted 1;4,2;5bis(ethano)cyclohexane $\mathbf{1}$ and derivatives thereof; hence twistanes are tricyclic. Ditwistanes (2) are tetracyclic compounds and defined by the occurrence of a twistane substructure in which one cyclohexane ring is spannedin a 'para' manner-by a not yet accounted for (i.e., third) ethano bridge. Stated differently, ditwistanes consist of two twistanes, which have two twist-boat cyclohexane rings in common.


So far, to the best of our knowledge, there have been four syntheses of ditwistane(s) in the literature (vide infra): three accesses to the unsubstituted ditwistane $2^{1-3,4-6}$ and 3 and one synthesis of the dihydroxytetramethylditwistanedione $\mathbf{1 9}^{7,8}$. The fifth route to a ditwis-

[^0]tane is the unexpected outcome of our recent attempt to effect a conjugate addition of $t \mathrm{Bu}_{2} \mathrm{CuLi}$ to 4-tert-butyl-2-cyclohexen-1-one ( $\mathbf{3}$; Scheme 1). Rather than the desired trans-3,4-di-tert-butyl-1-cyclohexanone $\left(\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}\right)$ we isolated-according to HRMS-a product of molecular formula $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$ ( $36 \%$ yield). ${ }^{9}$ The same compound $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$ resulted when 4-tert-butyl-2-cyclohexen-1-one (3) was treated with 0.6 equiv of KHMDS ( $30 \%$ yield). X-ray crystallographic analysis established that this compound was di-tert-butylhydroxyditwistanone $\mathbf{8}^{10}$ (Fig. $1^{11}$ ).

Irrespective of the base, the overall transformation $\mathbf{3} \rightarrow \boldsymbol{8}$ follows the same mechanism. As detailed in Scheme 1, it must comprise the following steps: partial enolate formation ( $\rightarrow$ metalo-3); tandem ${ }^{13}$ intermolecular/intramolecular Michael addition OR enolate DielsAlder reaction ${ }^{14}(\rightarrow \mathbf{4})$; ketoenolate equilibration $(\mathbf{4} \rightarrow \mathbf{6})$; aldol addition $(\rightarrow \mathbf{7})$; alcoholate protonation upon workup $(\rightarrow \mathbf{8})$.

Ditwistane $\mathbf{8}$ with the indicated stereochemistry results as the dimerization product of 4 -tert-butylcyclohexenone (3) and its enolate (metalo-3) only if the introductory Michael addition $(\rightarrow \mathbf{4})$ proceeds with an effective mutual resolution (cf. Scheme 1): Along the ditwistane-delivering pathway, the $R$-enantiomer of the enolate and the $S$-enantiomer of the non-deprotonated enone combine exclusively with one another-and vice versa (which implies that enantiopure 4-tert-butylcyclohexenone cannot form ditwistane 8 upon partial deprotonation). The reason for this preference is the minimization of steric hindrance, plausibly while the first $\mathrm{C}-\mathrm{C}$ bond forms: Only said mutual reconnaissance allows each


3
metalo- $R^{*}-3 \quad S^{*}-3$

$\downarrow \sim \mathrm{H}^{\oplus}$


6

epi-8

epi'-8




7

iso-8

Scheme 1. Reagents and conditions: (a) $t \mathrm{Bu}_{2} \mathrm{CuLi}$ (2.0 equiv), $\mathrm{Et}_{2} \mathrm{O}$, $-30^{\circ} \mathrm{C}, 30 \mathrm{~min}$, room temp., $21 \mathrm{~h} ; 36 \%$ (we re-isolated a considerable amount of impure $\mathbf{3}$ implying 'considerably more than $36 \%$ yield of $\mathbf{8}$ based on recovered starting material'). (b) KHMDS (0.6equiv), THF, $-78^{\circ} \mathrm{C}$ (25 min), room temp. (16h); 33\%.


Figure 1. Pluton/Povray plot ${ }^{12}$ of ditwistane 8.
reactant to selectively engage that face of its sixmembered ring, which opposes the attached tert-butyl substituent.

In contrast, if uniquely enolate metalo-3 had reacted on the face opposite to its tert-butyl group, enone 3, however, on its tert-butylated side, the epimeric ditwistane epi- $\mathbf{8}$ would have been obtained. Conversely, if enolate metalo- $\mathbf{3}$ had reacted on its tert-butylated side and enone 3 on the less hindered opposite side, another epimer




11
12
$\downarrow$ c), d)

13
e), f)

14
$\downarrow \mathrm{g})$-i)

2

16

17


19


20

Scheme 2. Reagents and conditions: Ref. 1: (a) $\mathrm{Br}_{2}$; 68\%; (b) NaOMe , $\Delta ; 69 \%$; Ref. 2: (c) HCl, aq THF; $77 \%$; (d) $h v ; 82 \%$; Ref. 3: (e) $\mathrm{CH}_{2} \mathrm{~N}_{2}$; (f) hydrazine hydrate, KOH , triethylene glycol; $85 \%$ over the two steps; (g) aq $\mathrm{H}_{2} \mathrm{SO}_{4} ; 90 \%$; (h) $\mathrm{CH}_{2} \mathrm{~N}_{2}$; (i) hydrazine hydrate, KOH , triethylene glycol; 73\% over the two steps; (j) $\mathrm{H}_{2}$, $\mathrm{Pd} / \mathrm{C} ; 77 \%$.-Ref. 7: (k) $\mathrm{NaIO}_{4}, \mathrm{H}_{2} \mathrm{O} ; \leqslant 20 \%$; Ref. 8 : (l) $h v ; 82 \%$; (m) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} ; 92.5 \%$.
would have resulted, namely ditwistane epi'-8. If, finally, bond formation between enolate metalo- $\mathbf{3}$ and enone $\mathbf{3}$ had occurred on the tert-butylated side of both reactants, this would have yielded compound iso-8, that is, another diastereomer-albeit not an epimer-of the actually formed ditwistane $\mathbf{8}$. We detected none of these diastereomers during chromatography-assuming they would have eluted from the column with similar polarity as 8.

Our synthesis of ditwistane $\mathbf{8}$ in 1 step and $36 \%$ yield is more straightforward and more efficient than the previously described approaches to the ditwistane framework: The route from acetal 9 to ditwistane 2 comprised 10 steps and provided $13 \%$ overall yield (Scheme 2, top); ${ }^{1-3}$ the conversion of dimethylphenol


24
25




Scheme 3. Reagents and conditions. Ref. 4: (a) $\mathrm{NaIO}_{4}, \mathrm{H}_{2} \mathrm{O} ; 74 \%$; Ref. 5: (b) $\mathrm{HCl} ; 94 \%$; (c) $h v ; 38 \%$; Ref. 6: (d) ethylene glycol, $p-\mathrm{TsOH}$; $94 \%$; (e) $\mathrm{SOCl}_{2}$, pyridine; $67 \%$; (f) aq $\mathrm{HCl} ; 90 \%$; (g) aq $\mathrm{KOH} ; 76 \%$; (h) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} ; \geqslant 47 \%$.-Ref. 3: (i) Diels-Alder reaction: hydroquinone, $\Delta$; $6 \%$; (j) ethylene glycol, p-TsOH; 78\%; (k) $\mathrm{B}_{2} \mathrm{H}_{6} ; \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$; (l) $10 \%$ $\mathrm{H}_{2} \mathrm{SO}_{4} ; 25 \%$ over the two steps; (m) MsCl, pyridine; (n) NaH , DMF; $7 \%$ over the two steps.

16 into the octasubstituted ditwistane 19 comprised three steps and afforded $\leqslant 15 \%$ overall yield (Scheme 2, bottom); ${ }^{7,8}$ the synthesis of the ditwistanediols 27-as a mixture of stereoisomers-from ortho-(hydroxymethyl)phenol (21) required eight steps and afforded $5.4 \%$ overall yield (Scheme 3, top); ${ }^{4-6}$ last but not least, the transformation of diene 28 and dienophile 29 into the ditwistanone 31 proceeded in six steps and gave $0.08 \%$ overall yield (Scheme 3, bottom). ${ }^{3}$ It is noteworthy that the three last-mentioned syntheses and our access have one feature in common: The $\mathrm{C}_{12}$ scaffolds of the respective ditwistanes $\mathbf{1 9}, \mathbf{2 7}, \mathbf{3 1}$, and $\mathbf{8}$ are established from two six-membered ring reagents.

## References and notes

1. Chapman, N. B.; Key, J. M.; Toyne, K. J. J. Org. Chem. 1970, 35, 3860-3867.
2. Nakazaki, M.; Naemura, K. J. Org. Chem. 1977, 42, 2985-2988.
3. Nakazaki, M.; Naemura, K.; Kondo, Y.; Nakahara, S.; Hashimoto, M. J. Org. Chem. 1980, 45, 4440-4448.
4. Adler, E.; Brasen, S.; Miyake, H. Acta Chem. Scand. 1971, 25, 2055-2069.
5. Iwakuma, T.; Hirao, K.; Yonemitsu, O. J. Am. Chem. Soc. 1974, 96, 2570-2575.
6. Hirao, K.; Iwakuma, T.; Taniguchi, M.; Yonemitsu, O.; Date, T.; Kotera, K. J. Chem. Soc. Perkin Trans. 1 1980, 163-169.
7. Adler, E.; Junghahn, L.; Lindberg, U.; Berggren, B.; Westin, G. Acta Chem. Scand. 1960, 14, 1261-1273.
8. Hirao, K.; Iwakuma, T.; Taniguchi, M.; Abe, E.; Yonemitsu, O. J. Chem. Soc., Chem. Commun. 1974, 22, 691692.
9. $\left(1 R^{*}, 2 R^{*}, 4 R^{*}, 6 S^{*}, 7 S^{*}, S^{*}, 9 R^{*}, 11 R^{*}\right)$-6,11-Di-tert-butyl-9-hydroxytetracyclo[6.2.2.0 $\left.{ }^{2.7} .0^{4.9}\right]$ dodecan-3-one (8): Method A: At $-70^{\circ} \mathrm{C} t \mathrm{BuLi}(1.5 \mathrm{M}$ in pentane, 42 mL , $63 \mathrm{mmol}, 4.0$ equiv) was added to a suspension of CuI ( $6.068 \mathrm{~g}, 31.9 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(175 \mathrm{~mL})$. After 30 min the temperature was raised to $-30^{\circ} \mathrm{C}$ and 4 -tert-butyl-2-cyclohexen-1-one ( $2.419 \mathrm{~g}, 15.9 \mathrm{mmol}$ ) was added dropwise. The temperature was increased to ambient. After 21 h , quenching with $1: 1$ satd aq $\mathrm{NH}_{4} \mathrm{Cl} /$ conc. aq $\mathrm{NH}_{3}(350 \mathrm{~mL})$, extractive workup, drying over $\mathrm{MgSO}_{4}$, and flash chromatography on silica gel (cyclohexane/ EtOAc $10: 1 \rightarrow 1: 1$ ) provided the title compound $(0.867 \mathrm{~g}$; $36 \%$ ) as a colorless solid ( $\mathrm{mp} 215-217^{\circ} \mathrm{C}$; recrystallization from toluene $\rightarrow$ X-ray crystallography). Earlier fractions of the chromatographic separation provided unidentified mixtures $(0.564 \mathrm{~g})$ followed by a dark oil $(1.497 \mathrm{~g})$ which, according to the $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CDCl}_{3}$ consisted mostly of re-isolated 4-tert-butyl-2-cyclohexen1 -one ( $<9.83 \mathrm{mmol},<62 \%$ ). Method B: At $-78^{\circ} \mathrm{C} 4$-tert-butyl-2-cyclohexen-1-one $(200 \mathrm{mg}, 1.31 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ was added dropwise to KHMDS $(158.2 \mathrm{mg}$, 0.793 mmol , 0.6 equiv) in THF ( 15 mL ). After 25 min the cooling bath was removed. Sixteen hours later the reaction was quenched by adding satd aq $\mathrm{NH}_{4} \mathrm{Cl}(14 \mathrm{~mL})$ and the resulting mixture processed similarly as described above (the eluent being cyclohexane/EtOAc 7:2 $\rightarrow 2: 1$ ). This, too, afforded crystalline $\mathbf{8}(52.4 \mathrm{mg} ; 33 \%)$. ${ }^{1} \mathrm{H}$ NMR ( $500.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ as internal standard in $\mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta=0.73$ and $0.79\left[2 \mathrm{~s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.20(\mathrm{br} \mathrm{s}, \mathrm{OH}), 1.24$ $\left[J_{8,12-\mathrm{H}(\mathrm{B})}=10.8, J_{8,12-\mathrm{H}(\mathrm{A})}=8.2, J_{8,7} \approx 0\right.$ (cf. Ref. 10), 8$\left.\mathrm{H}^{*}\right], 1.28-1.35\left(\mathrm{~m}, 6-\mathrm{H}, 10-\mathrm{H}^{1}, 11-\mathrm{H}^{*}\right)$, superimposes high-field branch of A part of AB signal $\left(\delta_{\mathrm{A}}=1.39\right.$,
$\delta_{\mathrm{B}}=1.66, J_{\mathrm{AB}}=12.8$, in addition split by $J_{\mathrm{A}, 8}=8.1$, $\left.J_{\mathrm{A}, 11}=4.9, J_{\mathrm{B}, 8}=11.3, J_{\mathrm{B}, 11}=1.2,12-\mathrm{H}_{2}\right), \mathrm{B}$ part of preceding signal interlocks with $1.63\left[\mathrm{~d}, J_{g e m}=12.5\right.$, $J_{10-\mathrm{H}(2), 1} \approx 0$ (cf. Ref. 10 ), $\left.10-\mathrm{H}^{2}\right], \mathrm{AB}$ signal ( $\delta_{\mathrm{A}}=1.71$, $\delta_{\mathrm{B}}=2.04, J_{\mathrm{AB}}=14.1$, in addition split by $J_{\mathrm{A}, 4}=J_{\mathrm{A}, 6}=$ 3.2, $\left.\quad J_{\mathrm{B}, 6}=11.4, \quad J_{\mathrm{B}, 4}=2.5, \quad 5-\mathrm{H}_{2}\right), \quad 1.80 \quad\left[\mathrm{dd}, \quad J_{1,2}=\right.$ $J_{1,10-\mathrm{H}(1)}=6.0, J_{1,10-\mathrm{H}(2)}$ and $J_{1,11} \approx 0$ (cf. Ref. 10), $\left.1-\mathrm{H}\right]$, 1.92 [dd, $J_{7,2}=5.9, J_{7,6}=2.8, J_{7,8} \approx 0$ (cf. Ref. 10), 7-H], $2.10\left(\mathrm{br} \mathrm{dd}, J_{4,5-\mathrm{H}(\mathrm{A})} \approx J_{4,5-\mathrm{H}(\mathrm{B})} \approx 2.8,4-\mathrm{H}\right), 2.26(\mathrm{dd}$, $\left.J_{2,1}=J_{2,7}=6.0,2-\mathrm{H}\right) ;{ }^{*}$ assignments interchangeable. ${ }^{13} \mathrm{C}$ NMR [125.7 MHz, $\mathrm{C}_{6} \mathrm{D}_{6} ; 1 .{ }^{1} \mathrm{H}$ decoupled; 2. APT ("+"" for upward and "-" for downward peaks)]: $\delta=$ " + " 23.39 (C-12), "+" 24.67 (C-5), "-" 28.03 and "-" 28.77 [6$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ 11-C $\left(\mathrm{CH}_{3}\right)_{3}$ ], 30.16,* 32.75,* and 33.25* [6$C\left(\mathrm{CH}_{3}\right)_{3}, 11-C\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{C}-11^{* *}$ ], "-" $31.05(\mathrm{C}-1)$, " + " 34.85 (C-10), "-" 38.36 (C-7), "-" 43.40 (C-8**), "-" 47.21 (C-6), "-" 50.22 (C-2), "-" 59.72 (C-4), 73.88* (C9), 215.05* (C-3); *signal not detected in APT ${ }^{13} \mathrm{C}$ NMR spectrum after 40,960 scans of a satd sample; **assignments interchangeable if and when assignments of $8-\mathrm{H} / 11-$ H are changed (vide supra). IR (film): $\tilde{v}=3380,2960$, 2925, 2875, 1705, 1480, 1395, 1370, 1330, 1315, 1290, 1240, 1200, 1175, 1150, 1120, 1065, $1020 \mathrm{~cm}^{-1}$. MS (EI, 70 eV ): $m / z=304\left(11 \%, M^{\bullet} \oplus\right), 289\left(2 \%, M^{\bullet}{ }^{\oplus}-\mathrm{Me}^{\bullet}\right), 247(2 \%$, $\left.\mathrm{M}^{\bullet}{ }^{\oplus}-t \mathrm{Bu} \mathbf{}^{\bullet}\right), \quad 153 \quad\left(30 \%, \quad \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}^{\oplus}=4\right.$-tert-butyl-1-hy-droxy-1-cyclohexen-3-y ${ }^{\oplus}$ ), $152\left(100 \%, \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}^{\bullet}{ }^{\oplus}=4\right.$ -tert-butyl-2-cyclohexen-1-one $\left.{ }^{\bullet}{ }^{\oplus}\right), 96\left(98 \%, \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}^{\bullet} \oplus=3\right.$ -cyclohexen-1-one ${ }^{\bullet}=$ McLafferty product of $m / z=152$ ), $57\left(72 \%, \mathrm{C}_{4} \mathrm{H}_{9}^{\oplus}=t \mathrm{Bu}^{\oplus}\right)$. Elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$ (304.5): C 78.90, H 10.61; found C 78.73, H 10.59.
10. Compound $\mathbf{8}$ comprises two isolated ${ }^{1} \mathrm{H}$ spin systems: $\quad 10-\mathrm{H}_{2} \Longleftrightarrow 1-\mathrm{H} \Longleftrightarrow 2-\mathrm{H} \Longleftrightarrow 7-\mathrm{H} \Longleftrightarrow 6-\mathrm{H} \Longleftrightarrow$ $5-\mathrm{H}_{2} \Longleftrightarrow 4-\mathrm{H}$ and $8-\mathrm{H} \Longleftrightarrow 12-\mathrm{H}_{2} \Longleftrightarrow 11-\mathrm{H}$. This results from the virtual absence of vicinal couplings between 1-H and $11-\mathrm{H}\left(J_{1,11} \approx 0 \mathrm{~Hz}\right)$ and between $7-\mathrm{H}$ and $8-\mathrm{H}$ $\left(J_{7,8} \approx 0 \mathrm{~Hz}\right)$. In the Karplus analysis, the smallness of these couplings reflects the proximity of the corresponding torsional angles to $90^{\circ}$ as calculated from the X-ray data: $\angle 1-\mathrm{H} / \mathrm{C}-1 / \mathrm{C}-11 / 11-\mathrm{H}=82.6^{\circ}, \quad \angle 7-\mathrm{H} / \mathrm{C}-7 / \mathrm{C}-8 / 8-\mathrm{H}=78.4^{\circ}$. Similarly, $J_{1,10-\mathrm{H}(2)} \approx 0 \mathrm{~Hz}$ is in accordance with the torsional angle $\angle 1-\mathrm{H} / \mathrm{C}-1 / \mathrm{C}-10 / 10-\mathrm{H}(2)=82.1^{\circ}$ in the solid state. Since conversely $\angle 1-\mathrm{H} / \mathrm{C}-1 / \mathrm{C}-10 / 10-$ $\mathrm{H}(1)=37.9^{\circ}$ in the crystal and hence $J_{1,10-\mathrm{H}(1)}$ larger (namely 6.0 Hz ), the assignments $10-\mathrm{H}(1)=10-\mathrm{H}\left(s i^{*}\right)$ and $10-\mathrm{H}(2)=10-\mathrm{H}\left(r e^{*}\right)$ can be made.
11. CCDC 252042 contains the supplementary crystallographic data for this paper. These data can be obtained online free of charge [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or http:// deposit@ccdc.cam.ac.uk.
12. Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.
13. Tandem transformations in organic synthesis: Tietze, L. F.; Beifuss, U. Angew. Chem. 1993, 105, 137-170; Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 131-163; Bunce, R. A. Tetrahedron 1995, 51, 1310313159.
14. White, K. B.; Reusch, W. Tetrahedron 1978, 34, 24392443; Spitzner, D.; Engler, A. Org. Synth. Coll. 1993, VIII, 219-222; cf. also Gorobets, E. V.; Miftakhov, M. S.; Valeev, F. A. Russ. Chem. Rev. 2000, 69, 1001-1019.

[^0]:    Keywords: Twistane; Polycyclic hydrocarbon; Tandem reaction.

    * Corresponding author. Tel.: +49 761 2036029; fax: +49 761 2036100;
    e-mail: reinhard.brueckner@organik.chemie.uni-freiburg.de

